Absolute Value

Getting the Idea

The absolute value of a number is its distance from 0 on a number line. Since a distance must be either a positive number or zero, the absolute value of a number is always a positive number or zero. The absolute value of a number x is written as $|x|$.

The integers -4 and 4 are opposites. You can use the number line below to see that each number is the same distance from 0 . So, $|-4|=4$ and $|4|=4$.

Example 1

Find the value of $|-7|$.

Strategy Use a number line.

Step 1 Plot a point for -7 on a number line.

Step 2 Count the number of units from -7 to 0 .

The distance is 7 units.

$$
|-7|=7
$$

Solution $\quad|-7|=7$

You can use absolute values to represent and help you understand real-world situations.
For example, if a diver is 20 meters below the ocean's surface, that depth, in meters, can be shown as -20 meters. But the distance the diver would have to swim to get to the surface of the water cannot be represented by a negative number. You can use absolute value instead. The diver must swim |-20| meters, or 20 meters, to reach the surface.

Example 2

Hannah wrote a check for more money than she has in her bank account. The balance in her account is now -\$60. How much does Hannah owe the bank, in dollars?

Strategy Use an absolute value to represent the situation.

Step 1 Is the amount she owes a positive or negative number?
The balance in Hannah's account is $-\$ 60$, but she cannot owe the bank a negative amount of money.
The amount Hannah owes must be shown as a positive number.
Step 2 Use an absolute value.
The amount she owes, in dollars, is $|-60|$, or 60.
The number line below shows that Hannah owes the bank \$60.

Solution Hannah owes the bank $\mathbf{\$ 6 0}$.

Absolute values can also help you understand situations in which an exact number is not known.

Example 3

A team of mountaineers has climbed to the summit of Mount Everest. The temperature at the summit is less than $-15^{\circ} \mathrm{F}$. Describe how many degrees Fahrenheit below $0^{\circ} \mathrm{F}$ the temperature is.

Strategy Use an absolute value to represent and understand the situation.

Step 1 Is the number of degrees below $0^{\circ} \mathrm{F}$ a positive or negative number?
An actual temperature may be negative, but the number of degrees Fahrenheit below $0^{\circ} \mathrm{F}$ must be a positive number.

Step 2 Use a number line to represent the situation.
The temperature is less than $-15^{\circ} \mathrm{F}$.
On a number line, a number less than -15 is to the left of -15 .
The arrow below shows all the numbers less than -15 .

Step 3 Use absolute value to describe the number of degrees Fahrenheit below $0^{\circ} \mathrm{F}$.

$$
|-15|=15
$$

All the numbers less than -15 are more than 15 units from 0 .
So, if the temperature is less than $-15^{\circ} \mathrm{F}$, it is more than $15^{\circ} \mathrm{F}$ below $0^{\circ} \mathrm{F}$.
Solution \quad The temperature at the summit is more than $15^{\circ} \mathrm{F}$ below $0^{\circ} \mathrm{F}$.

Coached Example

Yesterday, Marcus bought two different stocks, A and B, each at the same price. From yesterday to today, the change in the price of Stock A was $\mathbf{- \$ 1 2}$, and the change in the price of Stock B was $\$ 9$. From yesterday to today, which stock's price changed by the greatest amount?

The price change with the greatest \qquad is the greatest change.

On the number line below, plot points for -12 and 9 .

Count the units from each integer to 0 to determine its absolute value.
$|-12|=$ \qquad
|9| = \qquad
Which number has the greater absolute value, -12 or 9 ? \qquad
The stock with the price change of \qquad dollars changed by the greatest amount.

That stock was Stock \qquad .

