Domain 2 • Lesson 16

Convert Measurements

Getting the Idea

The tables below show some conversions for units of **length** in both the **customary system** and the **metric system**.

Customary Units of Length

1 foot (ft) = 12 inches	(in.)
----------------------------------	-------

1 **yard** (yd) = 3 feet

1 yard = 36 inches

1 **mile** (mi) = 5,280 feet

1 mile = 1,760 yards

1 centimeter (cm) = 10 millimeters (mm)

1 meter (m) = 100 centimeters

1 meter = 1,000 millimeters

1 kilometer (km) = 1,000 meters

You can convert measurements using equivalent ratios.

Example 1

Nancy ran 8 miles. How many yards did she run?

Strategy	Set up equivalent ratios and cross multiply.
Step 1	Write a ratio that compares yards to miles. $\frac{\text{yards}}{\text{miles}} = \frac{1,760}{1}$
Step 2	Write a ratio that compares the unknown length to the length you know.
	Let y represent the number of yards.
	$\frac{\text{yards}}{\text{miles}} = \frac{y}{8}$
Step 3	Set up equivalent ratios using the two ratios.
	$\frac{1,760}{1} = \frac{y}{8}$
Step 4	Cross multiply.
	$1,760 \times 8 = 1 \times y$
	14,080 = y
Solution	Nancy ran 14,080 yards.

The tables below show conversions among units of **weight** and **mass**.

Customary Units of Weight

1	pound	(lb) =	16	ounces	(oz)
	pound		10	ounoco	(02)

1 **ton** (T) = 2,000 pounds

Metric Units of Mass

1 gram (g) = 1,000 milligrams (mg)	
------------------------------------	--

1 **kilogram** (kg) = 1,000 grams

1 metric ton (t) = 1,000 kilograms

Example 2

How many grams are equal to 5 kilograms?

Strategy	Set up equivalent ratios and cross multiply.
Step 1	Write a ratio that compares grams to kilograms. $\frac{\text{grams}}{\text{kilograms}} = \frac{1,000}{1}$
Step 2	Write a ratio that compares the unknown mass to the mass you know.
	Let g represent the number of grams.
	$\frac{\text{grams}}{\text{kilograms}} = \frac{g}{5}$
Step 3	Set up equivalent ratios using the two ratios.
	$\frac{1,000}{1} = \frac{g}{5}$
Step 4	Cross multiply.
	1,000 $ imes$ 5 = 1 $ imes$ g
	5,000 = g
Solution	There are 5.000 grams in 5 kilograms.

Compound units can be used to express measurements. For example, you may express a weight in ounces, or you may express the same weight using pounds and ounces.

Example 3

A newborn baby weighed 133 ounces. What is the baby's weight in pounds and ounces?

Strategy	Set up equivalent ratios and cross multiply.
Step 1	Write a ratio that compares ounces to pounds.
	$\frac{\text{ounces}}{\text{pounds}} = \frac{16}{1}$
Step 2	Write a ratio that compares the unknown weight to the weight you know.
	Let <i>p</i> represent the number of pounds.
	$\frac{\text{ounces}}{\text{pounds}} = \frac{133}{P}$
Step 3	Set up equivalent ratios using the two ratios.
	$\frac{16}{1} = \frac{133}{P}$
Step 4	Cross multiply.
	16 imes ho = 1 imes 133
	16p = 133
	$16p \div 16 = 133 \div 16$
	p = 8 R5
	The remainder is the additional number of ounces. There are 5 ounces

Solution The newborn baby weighed 8 pounds 5 ounces.

The tables below shows conversions among units of **capacity**.

Customary Units of Capacity

1 cup (c) = 8 fluid ounces (fl oz)

1 **pint** (pt) = 2 cups

1 quart (qt) = 2 pints

1 gallon (gal) = 4 quarts

Example 4

A fishbowl has a capacity of 192 fluid ounces. How many quarts is that?

Set up equivalent ratios and cross multiply.
Find the number of fluid ounces in a quart. 1 cup = 8 fluid ounces
2 cups = 16 fluid ounces = 1 pint
4 cups = 32 fluid ounces = 2 pints = 1 quart
There are 32 fluid ounces in a quart.
Write a ratio that compares fluid ounces to quarts.
$\frac{\text{fluid ounces}}{\text{quarts}} = \frac{32}{1}$
Write a ratio that compares the capacity you know to the unknown capacity.
Let q represent the number of quarts.
$\frac{\text{fluid ounces}}{\text{quarts}} = \frac{192}{q}$
Set up equivalent ratios using the two ratios.
$\frac{32}{1} = \frac{192}{9}$
Cross multiply.
32 imes q = 1 imes 192
32q = 192
$32q \div 32 = 192 \div 32$
q = 6

Solution The capacity of the fishbowl is 6 quarts.

Metric Units of Capacity

1 liter (L) = 1,000 milliliters (mL)

Coschod Example
A basketball player is 78 inches tall. What is his height in feet?
Write a ratio that compares inches to feet. Remember, 12 inches = 1 foot. $\frac{\text{inches}}{\text{feet}} = {1}$
Write a ratio that compares the height you know to the unknown height.
Let <i>f</i> represent the height in feet. $\frac{\text{inches}}{\text{feet}} = \frac{f}{f}$
Set up equivalent ratios using the two ratios.
Solve. Show your work.
The remainder is the additional number of The remainder is, so there are additional inches.
1 foot = 12 inches, so 6 inches = foot.
The basketball player is feet tall.

(