Convert Measurements

Getting the Idea

The tables below show some conversions for units of length in both the customary system and the metric system.

Customary Units of Length
$\mathbf{1}$ foot $(\mathrm{ft})=12$ inches (in).
1 yard $(\mathrm{yd})=3$ feet
1 yard $=36$ inches
1 mile $(\mathrm{mi})=5,280$ feet
1 mile $=1,760$ yards

Metric Units of Length$1 \text { centimeter }(\mathrm{cm})=10 \text { millimeters }(\mathrm{mm})$
1 meter $=1,000$ millimeters
1 kilometer $(\mathrm{km})=1,000$ meters

You can convert measurements using equivalent ratios.

Example 1

Nancy ran 8 miles. How many yards did she run?

Strategy Set up equivalent ratios and cross multiply.

Step 1 Write a ratio that compares yards to miles.

$$
\frac{\text { yards }}{\text { miles }}=\frac{1,760}{1}
$$

Step 2 Write a ratio that compares the unknown length to the length you know.
Let y represent the number of yards.
$\frac{\text { yards }}{\text { miles }}=\frac{y}{8}$
Step 3 Set up equivalent ratios using the two ratios.

$$
\frac{1,760}{1}=\frac{y}{8}
$$

Step 4 Cross multiply.

$$
\begin{aligned}
1,760 \times 8 & =1 \times y \\
14,080 & =y
\end{aligned}
$$

Solution Nancy ran 14,080 yards.

The tables below show conversions among units of weight and mass.

Customary Units of Weight

1 pound $(\mathrm{lb})=16$ ounces $(o z)$
1 ton $(T)=2,000$ pounds

Metric Units of Mass

1 gram (g)	$=1,000$ milligrams (mg)
1 kilogram (kg)	$=1,000$ grams
1 metric ton (t)	$=1,000$ kilograms

Example 2

How many grams are equal to 5 kilograms?

Strategy Set up equivalent ratios and cross multiply.

Step 1 Write a ratio that compares grams to kilograms.

$$
\frac{\text { grams }}{\text { kilograms }}=\frac{1,000}{1}
$$

Step 2 Write a ratio that compares the unknown mass to the mass you know.
Let g represent the number of grams.

$$
\frac{\text { grams }}{\text { kilograms }}=\frac{g}{5}
$$

Step 3 Set up equivalent ratios using the two ratios.

$$
\frac{1,000}{1}=\frac{g}{5}
$$

Step 4 Cross multiply.

$$
\begin{aligned}
1,000 \times 5 & =1 \times g \\
5,000 & =g
\end{aligned}
$$

Solution There are 5,000 grams in 5 kilograms.

Compound units can be used to express measurements. For example, you may express a weight in ounces, or you may express the same weight using pounds and ounces.

Example 3

A newborn baby weighed 133 ounces. What is the baby's weight in pounds and ounces?

Strategy Set up equivalent ratios and cross multiply.

Step 1 Write a ratio that compares ounces to pounds.

$$
\frac{\text { ounces }}{\text { pounds }}=\frac{16}{1}
$$

Step 2 Write a ratio that compares the unknown weight to the weight you know. Let p represent the number of pounds.

$$
\frac{\text { ounces }}{\text { pounds }}=\frac{133}{p}
$$

Step 3 Set up equivalent ratios using the two ratios.

$$
\frac{16}{1}=\frac{133}{p}
$$

Step 4 Cross multiply.

$$
\begin{aligned}
16 \times p & =1 \times 133 \\
16 p & =133 \\
16 p \div 16 & =133 \div 16 \\
p & =8 \mathrm{R} 5
\end{aligned}
$$

The remainder is the additional number of ounces. There are 5 ounces.
Solution The newborn baby weighed 8 pounds 5 ounces.

The tables below shows conversions among units of capacity.

Customary Units of Capacity

1 cup $(c)=8$ fluid ounces $(\mathrm{fl} \mathrm{oz})$
1 pint $(\mathrm{pt})=2$ cups
1 quart $(\mathrm{qt})=2$ pints
1 gallon $(\mathrm{gal})=4$ quarts

Metric Units of Capacity
1 liter $(L)=1,000$ milliliters $(m L)$

Example 4

A fishbowl has a capacity of 192 fluid ounces. How many quarts is that?

Strategy Set up equivalent ratios and cross multiply.

Step 1 Find the number of fluid ounces in a quart.
1 cup $=8$ fluid ounces
2 cups $=16$ fluid ounces $=1$ pint
4 cups $=32$ fluid ounces $=2$ pints $=1$ quart
There are 32 fluid ounces in a quart.
Step 2 Write a ratio that compares fluid ounces to quarts.

$$
\frac{\text { fluid ounces }}{\text { quarts }}=\frac{32}{1}
$$

Step 3 Write a ratio that compares the capacity you know to the unknown capacity.
Let q represent the number of quarts.
$\frac{\text { fluid ounces }}{\text { quarts }}=\frac{192}{q}$
Step 4 Set up equivalent ratios using the two ratios.

$$
\frac{32}{1}=\frac{192}{q}
$$

Step 5 Cross multiply.

$$
\begin{aligned}
32 \times q & =1 \times 192 \\
32 q & =192 \\
32 q \div 32 & =192 \div 32 \\
q & =6
\end{aligned}
$$

Solution The capacity of the fishbowl is 6 quarts.

Coached Example

A basketball player is 78 inches tall. What is his height in feet?
Write a ratio that compares inches to feet. Remember, 12 inches $=1$ foot.
$\frac{\text { inches }}{\text { feet }}=\overline{\overline{1}}$
Write a ratio that compares the height you know to the unknown height.
Let f represent the height in feet.
$\frac{\text { inches }}{\text { feet }}=\frac{}{f}$
Set up equivalent ratios using the two ratios.
\qquad $=$ \qquad
Solve. Show your work.

The remainder is the additional number of \qquad .The remainder is \qquad so there are \qquad additional inches.

1 foot $=12$ inches, so 6 inches $=$ \qquad foot.

The basketball player is \qquad feet tall.

