Lesson 18: Equivalent Expressions

Two expressions may look different even though they represent the same information or value. These expressions are said to be **equivalent.** You can use the commutative, associative, and distributive properties to find out whether two expressions are equivalent.

Example

Are the following two expressions equivalent?

5(x+3) 5x+15

Using the distributive property, rewrite one of the expressions.

$$5(x + 3) = 5 \cdot x + 5 \cdot 3$$

= 5x + 15

Because 5(x + 3) = 5x + 15, the expressions are equivalent.

Two expressions are also equivalent if you substitute the same value for the same variables and both expressions are equal.

Example

Determine whether (x + 3) + 4 is equivalent to x + 8 by letting x = 3 and x = -2.

When x = 3:

(x + 3) + 4 = ((3) + 3) + 4 x + 8 = (3) + 8= (6) + 4 = 11 = 10

When x = -2:

(x + 3) + 4 = ((-2) + 3) + 4 x + 8 = (-2) + 8= (1) + 4 = 6 = 5

For both of these *x*-values, the two expressions don't agree. The expressions (x + 3) + 4 and x + 8 are not equivalent.

CCSS: 6.NS.4, 6.EE.3, 6.EE.4

You can often simplify an expression to create an equivalent expression. You may need to use the order of operations.

Example

Simplify the following expression to create an equivalent expression.

3(x + 12) + 2x - 11

To simplify the expression, you can use the distributive property. Then you can combine the like terms. Be sure to follow the order of operations.

3(x + 12) + 2x - 11	
$3 \bullet x + 3 \bullet 12 + 2x - 11$	Use the distributive property.
3x + 36 + 2x - 11	Perform the multiplication first.
5x + 25	Combine the like terms.

Because 3(x + 12) + 2x - 11 = 5x + 25, the expressions are equivalent.

Example

Simplify the following expression to create an equivalent expression.

 $4(\frac{3}{2}x+2)\div 2-2^2\bullet x$

To simplify the expression, you can use the distributive property. Then you can combine the like terms. Be sure to follow the order of operations.

 $4(\frac{3}{2}x+2) \div 2 - 2^2 \bullet x$ $4(\frac{3}{2}x+2) \div 2 - 4 \bullet x$ Simplify the exponents first. $(4 \cdot \frac{3}{2}x + 4 \cdot 2) \div 2 - 4 \cdot x$ Use the distributive property. $(6x + 4 \cdot 2) \div 2 - 4 \cdot x$ Multiply/divide from left to right. $(6x + 8) \div 2 - 4 \bullet x$ Multiply/divide from left to right. $3x + 4 - 4 \cdot x$ Multiply/divide from left to right. 3x + 4 - 4xMultiply/divide from left to right. -x + 4Combine like terms. $4(\frac{3}{2}x+2) \div 2 - 2^2 \bullet x$ is equivalent to -x + 4.

TIP: The order of operations states that all operations within **P**arentheses are solved first, followed by **E**xponents. **M**ultiplication and **D**ivision are then solved from left to right, followed by **A**ddition and **S**ubtraction from left to right. These operations can be abbreviated as PEMDAS.