Lesson 20: Solving Inequalities

An **inequality** is a mathematical sentence comparing two expressions that are not equal. An inequality may use one of the following symbols: < or >. The symbol > means "is greater than." The symbol < means "is less than."

To solve inequalities, follow the same rules as for solving equations. Use inverse operations to isolate the variable.

Example

Solve the following inequality for *x*.

5*x* < -35

Use inverse operations to solve for *x*.

5x < -35	
$\frac{5x}{5} < -\frac{35}{5}$	Divide both sides by 5.
x < -7	

The solution set for the inequality is x < -7.

The graph of the solution set is shown below.

Notice that the dot on -7 is open. This means that -7 is not included as part of the solution set.

To check the answer, substitute any number less than -7 for x. Use x = -8.

Example

Solve the following inequality for *x*.

 $8 + x \ge 5$

Use inverse operations to solve for x.

 $8 + x \ge 5$ $8 - 8 + x \ge 5 - 8$ Subtract 8 from both sides. $x \ge -3$

The solution set for the inequality is $x \ge -3$.

The graph of the solution set is shown below.

-5 -4 -3 -2 -1 0 1 2

Notice that the dot on -3 is filled in. This means that -3 is included in the solution set.

To check the answer, substitute any number greater than or equal to -3 for x. Use x = 0.

$$8 + x \ge 5$$

 $8 + (0) \ge 5$
 $8 \ge 5$