Lesson 20: Solving Inequalities

An inequality is a mathematical sentence comparing two expressions that are not equal. An inequality may use one of the following symbols: <or $>$. The symbol > means "is greater than." The symbol < means "is less than."

To solve inequalities, follow the same rules as for solving equations. Use inverse operations to isolate the variable.

Example

Solve the following inequality for x.

$$
5 x<-35
$$

Use inverse operations to solve for x.

$$
\begin{aligned}
& 5 x<-35 \\
& \frac{5 x}{5}<-\frac{35}{5} \quad \text { Divide both sides by } 5 \\
& x<-7
\end{aligned}
$$

The solution set for the inequality is $x<-7$.
The graph of the solution set is shown below.

Notice that the dot on -7 is open. This means that -7 is not included as part of the solution set.

To check the answer, substitute any number less than -7 for x. Use $x=-8$.

$$
\begin{aligned}
& 5 x<-35 \\
& 5(-8)<-35 \\
& -40<-35
\end{aligned}
$$

Example

Solve the following inequality for x.

$$
8+x \geq 5
$$

Use inverse operations to solve for x .

$$
\begin{aligned}
& 8+x \geq 5 \\
& 8-8+x \geq 5-8 \quad \text { Subtract } 8 \text { from both sides. } \\
& x \geq-3
\end{aligned}
$$

The solution set for the inequality is $x \geq-3$.
The graph of the solution set is shown below.

Notice that the dot on -3 is filled in. This means that -3 is included in the solution set.

To check the answer, substitute any number greater than or equal to -3 for x. Use $x=0$.

$$
8+x \geq 5
$$

$8+(0) \geq 5$
$8 \geq 5$

