Lesson 21: Writing Inequalities

You can write inequalities that describe a real-world situation.

BExample

Write and graph an inequality to represent the following situation.
During the school year, Hermano has to write more than 6 essays for his English class.

$$
n>6
$$

In the inequality above, n must be greater than 6 . It could be 7,8 , or even 200. There are an infinite number of solutions for the inequality. The following graph shows $n>6$.

The empty circle shows that 6 is not a solution. The dark arrow to the right shows that Hermano has to write more than 6 essays.

Example

Write and graph an inequality to represent the following situation.
Isaac needs to spend less than $\$ 4$ on a new notebook.
Use a variable to represent how much Isaac can spend. You can use d for the number of dollars. Because d must be less than 4 , the inequality is $d<4$. The following graph shows $d<4$.

Any number less than 4 would be a solution.

Example

A computer company makes a new laptop that weighs less than 5 pounds. Write an inequality to represent this scenario. Then graph the inequality and write a possible solution.

Use a variable to represent how much the laptop can weigh. You can use p for the number of pounds. The variable p must be less than 5 . Therefore, the following inequality represents the scenario.

$$
p<5
$$

To make the graph, draw a circle at 5 . Then draw a line that points to the left to show that any value less than 5 is a solution. The following graph shows $p<5$.

A possible weight for the laptop computer is 4.2 pounds.

Example

A passenger on a roller coaster must be more than 3 feet tall. Write an inequality to represent this scenario. Then graph the inequality and write a possible solution.

Use a variable to represent how tall the person can be. You can use f for the number of feet. The variable f must be greater than 3 . Therefore, the following inequality represents the scenario.

$$
f>3
$$

To make the graph, draw a circle at 3 . Then draw a line that points to the right to show that any value greater than 3 is a solution. The following graph shows $f>3$.

A possible height for a passenger is $3 \frac{1}{2}$ feet.

