Key Words

denominator fraction numerator rational number

A rational number is any number that can be expressed as $\frac{a}{b}$, where a and b are integers and $b \neq 0$. Rational numbers include integers, fractions, repeating decimals, and terminating decimals. A fraction is a number that names equal parts in a whole. In a fraction, the numerator represents the number of equal parts being used. The denominator represents the total equal parts of the whole. Rational numbers can be negative or positive.
-6 is rational because it can be expressed as a fraction: $-\frac{6}{1}$.
0.678 is rational because it can be expressed as a fraction: $\frac{678}{1000}$.
$1 . \overline{3}$ is rational because it can be expressed as a fraction: $\frac{4}{3}$.
π is not rational because it cannot be expressed as a fraction.

Example

Plot $-1 \frac{1}{4}$ and $1 . \overline{1}$ on the number line below.

There are 4 spaces between each pair of integers on the number line. So, each mark represents $\frac{1}{4}$.
The rational number $-1 \frac{1}{4}$ is negative and is $\frac{1}{4}$ less than -1 . So it should be plotted one mark to the left of -1 .

The rational number $1 . \overline{1}$ is positive and is $0 . \overline{1}$ greater than 1 . So it should be plotted to the right of 1 . Since each mark represents $\frac{1}{4}$ or 0.25 , plot $1 . \overline{1}$ about halfway to the left of the first mark after 1.

The number line below shows $-1 \frac{1}{4}$ and $1 . \overline{1}$.

$\frac{1}{7}$

Guided Practice

1 Plot $-1 \frac{2}{5}$ on the number line below.

Step 1 Determine the value of each space on the number line.
There are \qquad spaces between each pair of integers.

So, each space represents \qquad .

Step 2 Determine where to plot the point.
The sign for $-1 \frac{2}{5}$ is \qquad and $-1 \frac{2}{5}$ is \qquad less than -1 .

Therefore, the point should be plotted \qquad

REMEMBER

On a number line, negative numbers are to the left of 0 . Positive numbers are to the right of 0 .

