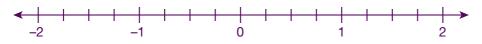
5 Rational Numbers

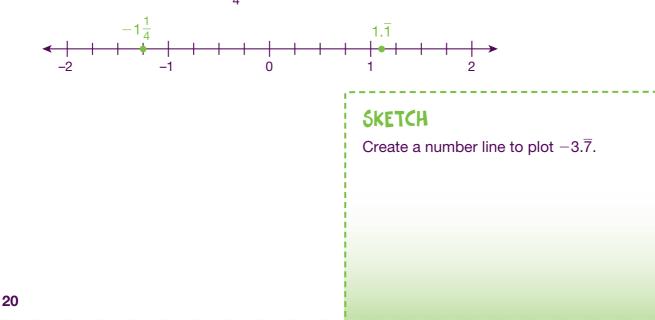

Key Words

denominator fraction numerator rational number A **rational number** is any number that can be expressed as $\frac{a}{b}$, where *a* and *b* are integers and $b \neq 0$. Rational numbers include integers, fractions, repeating decimals, and terminating decimals. A **fraction** is a number that names equal parts in a whole. In a fraction, the **numerator** represents the number of equal parts being used. The **denominator** represents the total equal parts of the whole. Rational numbers can be negative or positive.

- -6 is rational because it can be expressed as a fraction: $-\frac{6}{1}$.
- 0.678 is rational because it can be expressed as a fraction: $\frac{678}{1000}$
- $1.\overline{3}$ is rational because it can be expressed as a fraction: $\frac{4}{3}$.
- π is *not* rational because it *cannot* be expressed as a fraction.

Example

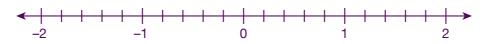
Plot $-1\frac{1}{4}$ and $1.\overline{1}$ on the number line below.



There are 4 spaces between each pair of integers on the number line. So, each mark represents $\frac{1}{4}$.

The rational number $-1\frac{1}{4}$ is negative and is $\frac{1}{4}$ less than -1. So it should be plotted one mark to the left of -1.

The rational number $1.\overline{1}$ is positive and is $0.\overline{1}$ greater than 1. So it should be plotted to the right of 1. Since each mark represents $\frac{1}{4}$ or 0.25, plot $1.\overline{1}$ about halfway to the left of the first mark after 1.


The number line below shows $-1\frac{1}{4}$ and $1.\overline{1}$.

Guided Practice

Plot $-1\frac{2}{5}$ on the number line below.

Step 1 Determine the value of each space on the number line.

There are ______ spaces between each pair of integers.

So, each space represents _____.

Step 2 Determine where to plot the point. \leftarrow -----

The sign for $-1\frac{2}{5}$ is _____ and $-1\frac{2}{5}$ is _____ less than -1.

Therefore, the point should be plotted _____ marks to the left of -1.

REMEMBER

On a number line, negative numbers are to the left of 0. Positive numbers are to the right of 0.

Step 3 Plot the point on the number line.

The number $-1\frac{2}{5}$ lies on a mark on the number line. Plot it on the number line.

A baker uses $0.\overline{3}$ ounces of salt in a recipe. Plot the number of ounces of salt she uses on the number line below.

Step 1 Determine the value of each space on the number line.

There are ______ spaces between each pair of integers.

So, each space represents _____.

Step 2 Determine where to plot the point.

The sign for $0.\overline{3}$ is ______ and $0.\overline{3}$ is ______ greater than 0. Since $0.\overline{3}$ is closer to ______ than it is to 0.4, plot the point closer to ______ on the number line.

Step 3 Plot the point on the number line. ----

Plot the number $0.\overline{3}$ on the number line at its approximate location.

REMEMBER

Many rational numbers will not fall exactly on a hash mark of a number line.

2