Directions: Use the information on page 37 to help you answer these questions. Use both forms of ratio in your answer. The first one is done for you.

1. Ratio of baseballs to golf balls $4 / 7$ or $4: 7$

Ratio of baseballs to all balls $4 / 11$ or $4: 11$
Ratio of golf balls to baseballs $\underline{7 / 4}$ or $\underline{7: 4}$
Ratio of golf balls to all balls $\underline{7 / 11}$ or $\mathbf{7 : 1 1}$

2. Ratio of jeans to shirts $\qquad$
Ratio of jeans to clothes items $\qquad$
Ratio of shirts to jeans $\qquad$
Ratio of shirts to clothes items $\qquad$
3. Ratio of bicycles to skateboards $\qquad$
Ratio of bicycles to wheeled vehicles $\qquad$
Ratio of skateboards to bicycles $\qquad$


Ratio of skateboards to wheeled vehicles $\qquad$

Directions: Write these rates as ratios as a fraction and with a colon. The first one is done for you. A rate always has a denominator of 1 .
4. 60 miles per gallon

60/1 or 60:1
8. 24 hours in a day
$\qquad$ or $\qquad$
9. 60 minutes to an hour
$\qquad$ or $\qquad$
11. $8 \%$ apr (annual percentage rate)
10. 365 days to a year
$\qquad$ or $\qquad$
$\qquad$ or $\qquad$
7. $1,200 \mathrm{rpm}$ (revolutions per minute)
$\qquad$ or $\qquad$
6. 16 ounces to a pound
$\qquad$ or $\qquad$

Directions: Use the information on page 37 to help you solve these word problems. Use an equation in either fraction or colon format to solve each problem. The first one has been done for you.

1. You can run a distance of 2 blocks in 3 minutes. How many blocks can you run in 18 minutes?

Equation: $2: 3$ :: $n: 18$ or $2 / 3=n / 18$

$$
\begin{aligned}
3 \times n & =2 \times 8 \\
3 n & =36 \\
n & =12
\end{aligned}
$$

Answer: You can run 12 blocks.
2. You can read 5 pages of a novel in 3 minutes. How many pages of the novel can you read in 60 minutes?

Equation: $\qquad$
Answer: $\qquad$
3. It takes you 5 minutes to mow 7 square yards of a lawn. How long would it take to mow 630 square yards?

Equation: $\qquad$
Answer: $\qquad$
4. A running faucet sends 14 gallons of water down the drain every 3 minutes. How many gallons will go down the drain in 90 minutes?

Equation: $\qquad$
Answer: $\qquad$
5. A clothes washer uses 170 gallons of water for 4 loads. How many gallons would be used for 240 loads?

Equation: $\qquad$
Answer: $\qquad$
6. A volunteer beach clean up crew collected 20 bags of trash in 3 hours. How many hours would it take them to collect 1,000 bags of trash?

Equation: $\qquad$
Answer: $\qquad$
7. The average American uses about 145 pounds of paper every 3 months. How many pounds of paper are used in 24 months?

Equation: $\qquad$
Answer: $\qquad$

Directions: Use the information on page 37 to help you solve these word problems. Use an equation in either fraction or colon format to solve each problem.

1. If you travel at a speed of 55 miles per hour, how far will you travel in 7 hours?

Equation: $\qquad$
Answer: $\qquad$
2. A car will travel 18 miles on 1 gallon of gasoline. How far will it travel on 20 gallons of gasoline?

Equation: $\qquad$
Answer: $\qquad$
3. There are 60 minutes in 1 hour. How many
minutes are there in $5 \frac{1}{2}$ hours?
Equation: $\qquad$
Answer: $\qquad$
7. A bicyclist traveled 100 miles in 9 hours.

How many miles did she travel in 40.5 hours?

Equation: $\qquad$
Answer: $\qquad$
8. There are 16 ounces in 1 pound. How many ounces are there in a 45 -pound $\operatorname{dog}$ ?

Equation: $\qquad$
Answer: $\qquad$

## Challenge

- There are 60 seconds in 1 minute. How many seconds are there in 1 day? $\qquad$
- There are 24 hours in 1 day. How many hours are there in 1 year? $\qquad$

6. $n+9 n+2 n=144$

$$
\begin{aligned}
12 n & =144 \\
n & =12
\end{aligned}
$$

Daniel has 12
stamps.
Bryan has 24
stamps.
George has 108
stamps.

## Page 36

1. $n+(n+25)+$
$(n+23)=93$
$3 n+48=93$

$$
n=15
$$

Fred is 15 years old.
Mom is 38 years
old.
Dad is 40 years old.
2. $3 n+220=310$ $n=30$
The skateboard is \$30.
The scooter is $\$ 90$.
The bike is $\$ 190$.
3. $9 n+6=3(n+6)$

$$
n=2
$$

Jimmy is 2 years old.
Brother is 18 years old.
4. $n+(n-5)+$
$(n+2)+(n+8)$
$=53$
$4 n+5=53$
$n=12$
Jesse is 12 years old.
Maybelle is 7 years
old.
Ellen is 14 years old.
Jeanne is 20 years old.
5. $n+(n+15)+$
$(n-10)+(n+23)$
$=108$
$4 n+28=108$ $n=20$
Joseph had \$20.00.
Elsa had \$35.00.

Julian had \$10.00.
Martha had \$43.00.
6. $n+2 n+4 n=105$

$$
\begin{aligned}
7 n & =105 \\
n & =15
\end{aligned}
$$

Melissa had \$15.00.
Christina had \$30.00.
Charmain had
$\$ 60.00$.
7. $n+3 n+(3 n-10)$
$=74$
$7 n-10=74$ $n=12$
Kristin had \$12.00. Matthew had $\$ 36.00$.
Joshua had \$26.00.
8. $n+(n+8)+3 n+$
$(n-5)=63$
$6 n+3=63$
$n=10$
Andrew is 10 years
old.
Kenneth is 18 years old.
Billy is 30 years old.
Cameron is 5 years
old.
Page 38

1. $4 / 7$ or $4: 7$

4/11 or 4:11
$7 / 4$ or 7:4
7/11 or 7:11
2. $5 / 8$ or $5: 8$
$5 / 13$ or $5: 13$
8/5 or 8:5
$8 / 13$ or $8: 13$
3. $6 / 7$ or $6: 7$

6/13 or 6:13
7/6 or 7:6
7/13 or 7:13
4. $60 / 1$ or $60: 1$
5. $55 / 1$ or $55: 1$
6. $16 / 1$ or $16: 1$
7. $1,200 / 1$ or $1,200: 1$
8. $24 / 1$ or $24: 1$
9. $60 / 1$ or $60: 1$
10. $365 / 1$ or $365: 1$
11. $8 / 100$ or $8: 100$

Page 39

1. $2: 3:: n: 18$
$n=12$ blocks
2. $5: 3:: n: 60$ $n=100$ pages
3. $5: 7:: n: 630$ $n=450$ minutes
4. $14: 3:: n: 90$
$n=420$ gallons
5. $170: 4$ :: $n: 240$
$n=10,200$ gallons
6. $20: 3:: 1000: n$
$n=150$ hours
7. $145: 3:: n: 24$
$n=1,160 \mathrm{lb}$.

## Page 40

1. $55: 1:: n: 7$
$n=385$ miles
2. $18: 1$ :: $n: 20$
$n=360$ miles
3. $60: 1:: n: 5.5$
$n=330$ minutes
4. $24: 1:: n: 13.5$
$n=324$ hours
5. $2,000,000: 1$ :: n:48
$n=96,000,000$ tons
6. 2,980:n :: 40:1
$n=74.5 \mathrm{hr}$.
7. $100: 9:: n: 40.5$
$n=450$ miles
8. $16: 1:: n: 45$
$n=720 \mathrm{oz}$.
Challenge: $86,400 \mathrm{sec}$.;
$8,760 \mathrm{hr}$.

## Page 41

1. 600 calories
2. 650 calories
3. 400 calories
4. 2,500 calories
5. handball and
bicycling
6. 1,650 calories
7. bicycling and walking
8. 3-hr. walk
9. Answers will vary.
10. 8 states
11. 7 states
12. 12 states
13. 1 to 5 million
14. Answers will vary.
15. California has the most.
Wyoming has the
least.
16. Answers will vary.

## Page 42

1. Friday
2. Thursday
3. $15^{\circ}$ to $20^{\circ}$
4. Monday
5. Wednesday and

Friday
6. Tuesday and Saturday
7. Monday, Saturday, and Sunday
8. $91.7^{\circ}$ or $92^{\circ}$
9. $71.7^{\circ}$ or $72^{\circ}$
10. Answers will vary.
11. water
12. nitrogen
13. $32 \%$
14. other category
15. $47 \%$
16. Answers will vary.

## Page 43

1. $+2-12=-10$

You owe $\$ 10.00$.
2. $32-40=-8$ 8 below 0
3. $-4+-11+-6=-21$ 21 below par
4. $-\$ 1000+\$ 750=$ \$250
\$250 owed
5. $-600+200+100+$ $150=-150$
He needed 150 points to get to 0 .
6. $-69+35=-34^{\circ} \mathrm{F}$
7. $-129-(+) 136=$ -265
$265^{\circ}$ difference
8. $-80-(+) 134=-214$
$214^{\circ}$ difference

## Practice 32


Discount Sporting Goods has thousands of items to appeal to every taste. The store is loaded with a variety of sporting equipment. Help the owners compute these ratios.


Directions: Use the illustration to help you compute these ratios. The first one is done for you.

1. What is the ratio of baseballs to bats? $\qquad$ 5:4 or 5/4
2. What is the ratio of bats to baseballs? $\qquad$
3. What is the ratio of mitts to balls? $\qquad$
4. What is the ratio of balls to mitts? $\qquad$
5. What is the ratio of caps to balls? $\qquad$
6. What is the ratio of balls to caps? $\qquad$
7. What is the ratio of bats to caps? $\qquad$
8. What is the ratio of caps to bats? $\qquad$

9. What is the ratio of bicycles to kites? $\qquad$
10. What is the ratio of kites to bicycles? $\qquad$
11. What is the ratio of footballs to basketballs? $\qquad$
12. What is the ratio of basketballs to footballs? $\qquad$
13. What is the ratio of kites to footballs? $\qquad$
14. What is the ratio of footballs to kites? $\qquad$
15. What is the ratio of balls to bicycles? $\qquad$
16. What is the ratio of bicycles to balls? $\qquad$
17. What is the ratio of kites to footballs? $\qquad$
18. What is the ratio of footballs to kites? $\qquad$

## Practice 33 <br> 

At Micro Models they design the exact replicas of houses, schools, businesses, sports arenas, and other structures. Help them complete the proportions in the problems below. The first one is done for you.

Reminder: To solve a proportion, the product of the means (middle terms) equals the product of the extremes (end terms).

1. Each inch of a model house represents 4 feet of a real house. How many feet are represented by 20 inches?

Equation: 1:4 :: 20:n so $n=80$
Answer: 80 feet
2. One inch on a model basketball court equals 2 feet. How many feet are represented by 25 inches?

Equation: 1:2 :: 25:n
Answer: $\qquad$
3. On a model school, 3 centimeters represents 15 meters. How many meters are represented by 9 centimeters?

Equation: $\qquad$
Answer: $\qquad$
4. The height on a model skyscraper uses a scale of 4 centimeters for each story. How many stories are represented by 100 centimeters?

Equation: $\qquad$
Answer: $\qquad$
5. The length of a model football field represented by a scale of 3 inches for 10 yards. How many yards are represented by 33 inches?

Equation: $\qquad$
Answer: $\qquad$
6. The length of a model swimming pool is represented by 3 centimeters to every 10 meters. How many meters are represented by 15 centimeters?

Equation: $\qquad$
Answer: $\qquad$
7. The length of a road is represented by a scale of 5 inches for every 3 miles. How many inches will be used to represent 30 miles?

Equation: $\qquad$
Answer: $\qquad$
8. The length of 7 yards on a scale model is represented by 2 inches. How many inches would be used to represent 42 yards?

Equation: $\qquad$
Answer: $\qquad$ Raytheom
3. no
4. 5 m.p.h.
5. 20 m.p.h.
6. the scale doesn't go 0 to 70
7. start at $0 /$ use a different scale
8. 1995
9. 1998
10. 10 thousand dollars
11. the scale is distorted, starts at 40
12. 25 thousand dollars
13. scale starts at 40 thousand dollars
14. starts at 0 and go to 70

## Page 27

1. 920 feet 48,000 feet ${ }^{2}$
2. 288 feet 4,700 feet $^{2}$
3. 360 feet 8,100 feet $^{2}$
4. 600 feet 20,000 feet ${ }^{2}$
5. 320 yd . $6,000 \mathrm{yd} .{ }^{2}$
6. 260 feet 4,225 feet $^{2}$
7. 346 m $7,300 \mathrm{~m}^{2}$
8. 350 yd .
$7,150 \mathrm{yd} .{ }^{2}$

## Page 28

1. 240 feet $^{2}$
2. 450 feet $^{2}$.
3. 1,035 feet $^{2}$
4. 240 feet $^{2}$
5. 4,171 feet $^{2}$
6. 1,155 feet $^{2}$
7. 672 feet $^{2}$
8. 87.5 feet $^{2}$
9. 99.6 feet $^{2}$
10. 484 feet $^{2}$

Page 29

1. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 9$
28.26 centimeters
2. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 23$
72.22 centimeters
3. $\mathrm{C}=2 \pi \mathrm{r}$

C $=2 \times 3.14 \times 2$
12.56 centimeters
4. $\mathrm{C}=\pi \mathrm{d}$
$\mathrm{C}=3.14 \times 2$
6.28 centimeters
5. $\mathrm{C}=\pi \mathrm{d}$

C $=3.14 \times 2.6$
8.164 centimeters
6. $\mathrm{C}=2 \pi \mathrm{r}$
$\mathrm{C}=2 \times 3.14 \times 12$
75.36 inches
7. $\mathrm{C}=2 \pi \mathrm{r}$
$\mathrm{C}=2 \times 3.14 \times 2$
12.56 inches
8. $\mathrm{C}=2 \pi \mathrm{r}$

C $=2 \times 3.14 \times 3$
18.84 centimeters

Page 30

1. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3 \times 3 \times 3.14$
$28.26 \mathrm{~cm}^{2}$
2. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 8 \times 8$
200.96 inches $^{2}$
3. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 6 \times 6$
$113.04 \mathrm{~cm}^{2}$
4. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 7 \times 7$
153.86
millimeters ${ }^{2}$
5. $\mathrm{A}=\pi \mathrm{r}^{2}$

A $=3.14 \times 9 \times 9$
254.34
millimeters ${ }^{2}$
6. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 2 \times 2$
12.56 feet $^{2}$
7. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 4 \times 4$
50.24 feet $^{2}$
8. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 4.5 \mathrm{x}$
4.5
$63.585 \mathrm{~cm}^{2}$
9. $\mathrm{A}=\pi \mathrm{r}^{2}$
$\mathrm{A}=3.14 \times 3.5 \mathrm{x}$
3.5
$38.465 \mathrm{~cm}^{2}$
10. $\mathrm{A}=\pi \mathrm{r}^{2}$
$A=3.14 \times 1.15 \mathrm{x}$
1.15
$4.15265 \mathrm{~cm}^{2}$

## Page 31

1. 216 inches $^{3}$
2. $27 \mathrm{~cm}^{3}$
3. 729 inches $^{3}$
4. 8 inches $^{3}$
5. 125 inches $^{3}$
6. 900 cubic puzzles
7. 192 cubic magnifying glasses
8. $1,000 \mathrm{~cm}^{3}$ blocks
9. 120 games
10. 1,728 cubic puzzles

Page 33

1. library
2. town hall
3. gas station
4. $(-11,1)$
5. $(4,-4)$
6. $(-5,-9)$
7. park
8. $(-10,-7)$
9. $(-9,5)$
10. general store
11. drug store
12. III
13. I
14. II

Page 34

1. $3 / 10$
2. $3 / 40$
3. $4 / 15$
4. $2 / 3$
5. $9 / 50$
6. $8 / 45$
7. $11 / 16$
8. $2 / 5$
9. $1 / 2$
10. 1/27

Page 35

1. $n=35-12$
$n=23$
2. $23+n=41$ $n=18$
3. $n-29=61$
$n=90$
4. $36+n=53$

$$
n=17
$$

5. $19+n=43$
$n=24$
6. $n / 4=12$

$$
n=48
$$

7. $n \times 12=96$
$n=8$
8. $n / 8=11$
$n=88$
9. $n \times 19=190$

$$
n=10
$$

10. $42 / n=6$

$$
n=7
$$

## Page 36

1. $5: 4$ or $5 / 4$
2. $4: 5$ or $4 / 5$
3. $2: 5$ or $2 / 5$
4. $5: 2$ or $5 / 2$
5. $3: 5$ or $3 / 5$
6. $5: 3$ or $5 / 3$
7. $4: 3$ or $4 / 3$
8. 3:4 or $3 / 4$
9. $2: 3$ or $2 / 3$
56) 
10. $3: 2$ or $3 / 2$
11. $7: 5$ or $7 / 5$
12. $5: 7$ or $5 / 7$
13. $3: 7$ or $3 / 7$
14. $7: 3$ or $7 / 3$
15. $12: 2$ or $12 / 2$ or $6: 1$ or $6 / 1$
16. $2: 12$ or $2 / 12$ or $1: 6$ or $1 / 6$
17. $3: 7$ or $3 / 7$
18. $7: 3$ or $7 / 3$

Page 37

1. $1: 4:: 20: n$ $n=80$ feet
2. $1: 2:: 25: n$ $n=50$ feet
3. 3:15 :: 9:n $n=45 \mathrm{~m}$
4. $4: 1:: 100: n$ $n=25$ stories
5. 3:10 :: 33:n $n=110 \mathrm{yd}$.
6. $3: 10:: 15: n$ $n=50 \mathrm{~m}$
7. $5: 3:: n: 30$ $n=50$ inches
8. 7:2 :: 42:n or 2:7 :: $n: 42$ $n=12$ inches

Page 38

1. 528 9 59 (58.67)
2. 911 11 83 (82.8)
3. 1,160 13 89 (89.2)
4. 138 10 14 (13.8)
5. 63

12
5 (5.25)
6. 175

13
13 (13.46)
7. 109

16 7 (6.8)

Page 39

1. $(46,47,48,49,50$, $52,52,52,53,54$,

52
52
2. $(47,49,55,56,57$, 58, 59, 59, 59, 60, 60, 61, 63)
59
59
3. $(57,59,59,60,61$,
$61,63,63,65,66)$
59, 61, 63
61
4. $(47,49,49,49,51$,
$52,53,54,55,57$,
59)

49
52
5. $(39,40,44,44,45$,
$48,50,55,57,57$,
58, 60, 60, 61)
44, 57, 60
52.5

Page 40

| 1. C | 6. C |
| :--- | ---: |
| 2. D | 7. B |
| 3. B | $8 . \mathrm{D}$ |
| 4. A | $9 . \mathrm{B}$ |
| 5. A | $10 . \mathrm{D}$ |

Page 41

| 1. B | 6. A |
| :--- | ---: |
| 2. D | 7. C |
| 3. C | $8 . \mathrm{A}$ |
| 4. A | $9 . \mathrm{B}$ |
| 5. D | $10 . \mathrm{C}$ |

Page 42

| 1. A | 6. B |
| ---: | ---: |
| 2. B | 7. D |
| 3. C | $8 . \mathrm{C}$ |
| 4. B | $9 . \mathrm{A}$ |
| 5. D | $10 . \mathrm{D}$ |

## Page 43

| 1. C | 6. B |
| :--- | ---: |
| 2. C | 7. A |
| 3. B | 8. D |
| 4. D | 9. B |
| 5. D | $10 . \mathrm{C}$ |

Page 44

| 1. C | 6. A |
| :--- | ---: |
| 2. C | 7. C |
| 3. A | 8. B |
| 4. B | 9. D |
| 5. D | 10. C |

## Page 45

| 1. C | 6. C |
| :--- | :--- |
| 2. A | 7. A |
| 3. B | $8 . \mathrm{B}$ |

$=\mathbb{M}$ minocero
$\times \sim$ Raytheon

