Solve Problems in the Coordinate Plane

Getting the Idea

A point can be flipped over a line. The new point is called the reflection of the original point. When a point is reflected across the x-axis, the y-axis, or both axes on a coordinate plane, the signs of one or both coordinates will change. The new point also will be in a different quadrant.

Example 1

Plot point A at $(-2,4)$ on the coordinate plane. Then plot point B at $(-2,-4)$. Compare the coordinates and locations of points B and A.

Strategy Plot points A and B on a coordinate plane. Compare their coordinates. Describe how one point is a reflection of the other.

Step 1 Plot point A at $(-2,4)$ and point B at $(-2,-4)$.
Step 2

Step 3
Describe the locations of the points.
Both points lie on the same vertical
 line, $x=-2$.

Point A is in quadrant II and is 4 units above the x-axis.
Point B is in quadrant III and is 4 units below the x-axis.
So, point B is a reflection of point A over the x-axis.
If you folded the grid along the x-axis, point A would fold onto point B.
Solution The coordinate plane above shows points A and B. The points are reflections of each other across the x-axis, and their y-coordinates have different signs.

The statements below show the relationship between reflected points and the signs of their coordinates.

- If a point (x, y) is reflected across the x-axis, the sign of its y-coordinate changes.

$$
(x, y) \rightarrow(x,-y)
$$

- If a point (x, y) is reflected across the y-axis, the sign of its x-coordinate changes.

$$
(x, y) \longrightarrow(-x, y)
$$

- If a point (x, y) is reflected across both axes, the signs of both of its coordinates change.

$$
(x, y) \longrightarrow(-x,-y)
$$

You can use absolute value to find the distance between two points on a coordinate plane. Each axis on a coordinate plane is a number line. Since the absolute value of a number is its distance from zero on a number line, you can use absolute values to find horizontal and vertical distances on the coordinate plane.

Example 2

A map of some important places in Carr County is shown at the right. What is the distance, in kilometers, between City Hall and the library?

Strategy Use absolute values to find the distance between points. Then use the scale to find the distance in kilometers.

Step 1 Identify the ordered pairs.
City Hall is at $(-6,3)$.
The library is at $(4,3)$.
Step 2 Use absolute value to find the distance from

Scale: $\vdash=1$ kilometer City Hall to the y-axis.

Think of the line $y=3$ as a horizontal number line.
Zero on that number line is the point at which $y=3$ crosses the y-axis, or where $x=0$.

The x-coordinate for City Hall is -6 .
$|-6|=6$
The distance between City Hall and the y-axis is 6 units.

Step 3 Use absolute value to find the distance from the public library to the y-axis.

The x-coordinate for the library is 4 .
$|4|=4$
The distance between the library and the y-axis is 4 units.

Step 4 Add the absolute values to find the total distance.

The total distance between City Hall and the library on the map is:
$6+4=10$ units

Scale: $H=1$ kilometer

Each unit on the map represents 1 kilometer, so the actual distance is 10 kilometers.

Solution The distance between City Hall and the library is 10 kilometers.

You can also use absolute values to find the perimeter of a figure on a coordinate plane.

Example 3

A rectangular garden is shown below. What is the perimeter of the garden?

Strategy Use absolute values to find the length of one vertical side and one horizontal side. Then find the perimeter.

Step 1 Use absolute value to find the length of a vertical side.

Scale: $\vdash=1$ yard
The endpoints of one vertical side are $(3,6)$ and $(3,-6)$.
Think of the line $x=3$ as a vertical number line.
Zero on that number line is the point at which $x=3$ crosses the x-axis, or (3, 0).
The y-coordinates for the endpoints are 6 and -6 .

$$
|6|=6 \quad|-6|=6
$$

The total length of a vertical side is: $6+6=12$ units
Step 2 Use absolute value to find the length of a horizontal side.
The endpoints of one horizontal side are $(-5,6)$ and $(3,6)$.
The x-coordinates of the endpoints are -5 and 3 .
$|-5|=5$
$|3|=3$

The total length of the horizontal side is: $5+3=8$ units
Step 3 Find the perimeter.
Opposite sides in a rectangle are the same length, so add the lengths of all four sides to find the perimeter, P.
$P=12+8+12+8=40$ units
Each unit on the coordinate plane stands for 1 yard, so the actual perimeter is 40 yards.

Solution The perimeter of the garden is 40 yards.

Coached Example

Point J below at $(4,3)$ can be reflected across one or more axes to form a point at $(-4,-3)$. Describe the reflection(s) that are needed.

Compare the signs of the coordinates in $(4,3)$ and $(-4,-3)$.
The x-coordinates of the ordered pairs have different signs.
The \qquad -coordinates of the ordered pairs have different signs, too.

Would point J need to be reflected across the x-axis, the y-axis, or both axes to move to $(-4,-3)$ on the coordinate plane?

Since the signs of both coordinates are different, point J would need to be reflected across \qquad .

Check your answer by reflecting $(4,3)$ across the x-axis only.
The coordinates of that reflected point are (4, \qquad).

Plot that point on the grid above and label it point K.
Now, reflect point K across the y-axis.
The coordinates of that reflected point are \qquad , \qquad).

Plot that point above and label it point L.
Point L is at (\qquad , \qquad). Both of its coordinates have different signs than the coordinates of point J. Point L is a reflection of point J across

