Lesson 5: The Coordinate Plane

The coordinate plane is a system of two number lines. The x-axis is the horizontal number line in a coordinate plane. The \boldsymbol{y}-axis is the vertical number line in a coordinate plane.

The location of a point on the coordinate plane can be described by its distance along both number lines. An ordered pair is a pair of numbers (x, y) used to locate a point on a coordinate plane. The \boldsymbol{x}-coordinate is the first number in an ordered pair. The \boldsymbol{x}-coordinate describes the distance left or right from 0 on the x-axis. The \boldsymbol{y}-coordinate is the second number in an ordered pair. The \boldsymbol{y}-coordinate describes the distance up or down from 0 on the y-axis.

Example

Identify the location of the points on the coordinate plane.

To locate point A, count along the x-axis. The x-coordinate of point A is 3 . Then count up the y-axis. The y-coordinate of point A is 5 . Point A is located at $(3,5)$.

To locate the remaining points, do the same for each point.
Point B is located at $(5,3)$.
Point C is located at $(6,7)$.
Point D is located at $(8,9)$.
Point E is located at $(8,2)$.

The coordinates of the point where the number lines intersect are (0,0). This point is called the origin. However, the number lines in a coordinate plane can extend below and to the left of 0 . Positive x-coordinates are to the right of the origin, and negative x-coordinates are to the left of the origin. Positive y-coordinates are above the origin, and negative y-coordinates are below the origin.

When the axes are extended in both directions, they divide the coordinate plane into four parts, also known as quadrants.

Example

Identify the location of the points on the coordinate plane.
Point A is located in Quadrant I. All the points in Quadrant I have two positive numbers in their ordered pair, (x, y). Point A is located at (4,5).

Points in Quadrants II, III, and IV follow these general patterns; Quadrant II: $(-x, y)$; Quadrant III: ($-x,-y$); Quadrant IV: $(x,-y)$. You can use these patterns to check if your points have the right coordinates.

Point B is in Quadrant II: $(-6,3)$
Point C is in Quadrant III: $(-8,-8)$
Point D is in Quadrant IV: $(4,-3)$

You can use the coordinate plane to plot points. The ordered pairs for the points can include any rational numbers.

Example

Plot the following points on the coordinate plane.

$$
A(-7,5) \quad B\left(4,-8 \frac{1}{2}\right)
$$

To plot point A, you need to go 7 units to the left of the origin along the x-axis. Then you need to go 5 units up along the y-axis.

To plot point B, you need to go 4 units to the right of the origin along the x-axis. Then you need to go $8 \frac{1}{2}$ units down along the y-axis. That will be halfway between the -8 and -9 markers along the y-axis.

If the ordered pairs of two points are different by a negative symbol, the points are reflections over an axis. If the ordered pairs of the points are different by two negative symbols, the points are reflections over both axes.

Example

Plot the following three pairs of points on a coordinate plane. Then compare their relationships with the axes.
$A(5,7)$ and $B(-5,7)$
$C(-2,4)$ and $D(-2,-4)$
$E(3,8)$ and $F(-3,-8)$

Points A and B are different because of a negative symbol in the x-coordinate. They are a reflection of each other across the y-axis.

Points C and D are different because of a negative symbol in the y-coordinate. They are a reflection of each other across the x-axis.

Points E and F are different because of a negative symbol in both the x - and the y-coordinates. They are a reflection of each other across the y-axis and the x-axis.

