Domain 2 • Lesson 14

Unit Rates

Getting the Idea

A rate is a ratio that compares two quantities with different units of measure. Some examples of rates are shown below:

- Miles per gallon: 540 miles on 18 gallons of gas, $\frac{540 \text { miles }}{18 \text { gallons }}$
- Cost: $\$ 3.60$ for 4 pounds, or $\frac{\$ 3.60}{4 \text { pounds }}$
- Pay rate: $\$ 285$ for 30 hours, or $\frac{\$ 285}{30 \text { hours }}$

Rates are often given as a unit rate, which is a rate in which the second measure is 1 unit. Each of the rates listed above can be simplified as unit rates.

- Miles per gallon: $\frac{540 \text { miles }}{18 \text { gallons }}=\frac{30 \text { miles }}{1 \text { gallon }}$
- Cost: $\frac{\$ 3.60}{4 \text { pounds }}=\frac{\$ 0.90}{1 \text { pound }}$
- Pay rate: $\frac{\$ 285}{30 \text { hours }}=\frac{\$ 9.50}{1 \text { hour }}$

In general, for every ratio $a: b$, the corresponding unit rate is $\frac{a}{b}$, where $b \neq 0$.
For example, if there are 4 cups of cranberry juice to every 5 cups of orange juice in a punch recipe, the ratio of cranberry juice to orange juice is $4: 5$, or $\frac{4}{5}$. That means that there is $\frac{4}{5}$ cup of cranberry juice for every 1 cup of orange juice. You can see this mathematically by multiplying each quantity by 5 :

$$
\frac{\frac{4}{5}}{1}=\frac{\frac{4}{5} \times 5}{1 \times 5}=\frac{4}{5}
$$

Example 1

A recipe for trail mix uses 5 ounces of mixed nuts, 6 ounces of dried fruit, and 4 ounces of granola. How many ounces of granola are there for every ounce of dried fruit?

Strategy Write a ratio. Then find the unit rate.

Step 1 Write the ratio of granola to dried fruit.
For every 4 ounces of granola, there are 6 ounces of dried fruit.
The ratio of granola to dried fruit is $4: 6$, or $\frac{4}{6}$.
In simplest form, $\frac{4}{6}=\frac{2}{3}$.
Step 2 Interpret the ratio as a unit rate.
The ratio 2:3 means that there is $\frac{2}{3}$ ounce of granola for every ounce of dried fruit.

Step 3 Check your work.
Multiply by 6 .
$\frac{\frac{2}{3}}{1}=\frac{\frac{2}{3} \times 6}{1 \times 6}=\frac{4}{6}$
For every 4 ounces of granola, there are 6 ounces of dried fruit.
Solution There is $\frac{2}{3}$ ounce of granola for each ounce of dried fruit.
To find a unit price, identify the quantities you want to compare and write a rate. Then simplify the rate to find the unit price.

Example 2

Mr. Wilson spent $\$ 252$ to stay 3 nights at Pavia Pavilions. At that rate, how much will he spend to stay 7 nights?

Strategy Find the unit price. Then multiply by 7 nights.

Step 1 Find the rate.
The rate is $\$ 252$ for 3 nights, or $\frac{252}{3}$.
Step 2 Find the unit rate, or unit price.
Divide 252 by 3 to find the price for one night.

$$
\begin{array}{r}
84 \\
3 \longdiv { 2 5 2 } \\
-24 \\
\hline 12 \\
-12 \\
\hline 0
\end{array}
$$

The unit price is $\$ 84$ per night.
Step 3 Multiply the unit price by 7 .
$7 \times 84=588$
Solution Mr. Wilson will spend $\$ 588$ to stay 7 nights at Pavia Pavilions.

In Example 2, you could also have set up equivalent ratios to solve the problem.
Let x represent the cost of staying 7 nights.

$$
\begin{aligned}
\frac{252}{3} & =\frac{x}{7} & & \\
3 \times x & =252 \times 7 & & \longleftarrow \text { Cross multiply. } \\
3 x & =1,764 & & \longleftarrow \text { Divide both sides by } 3 . \\
x & =588 & &
\end{aligned}
$$

A common use of rate is the speed formula $r=\frac{d}{t}$, or rate $=\frac{\text { distance }}{\text { time }}$.

Example 3

A train is traveling at a constant speed of 45 miles per hour. How far will the train travel in 2.5 hours?

Strategy Use the speed formula.

Step 1 Substitute the known values in the speed formula.

$$
\begin{aligned}
& r=\frac{d}{t} \\
& 45=\frac{d}{2.5} \text { or } \frac{45}{1}=\frac{d}{2.5}
\end{aligned}
$$

Step 2 Find an equivalent fraction for $\frac{45}{1}$ with a denominator of 2.5.

$$
\begin{aligned}
& \frac{45}{1}=\frac{45 \times 2.5}{1 \times 2.5}=\frac{112.5}{2.5} \\
& \frac{45 \text { miles }}{1 \text { hour }}=\frac{112.5 \text { miles }}{2.5 \text { hours }}
\end{aligned}
$$

Solution The train will travel 112.5 miles in 2.5 hours.

You can rewrite the speed formula $r=\frac{d}{t}$ to solve for either distance, d, or time, t.
If $r=\frac{d}{t}$, then $d=r \times t$.
If $r=\frac{d}{t}$, then $t=\frac{d}{r}$.
In Example 3, you could have used the formula $d=r \times t$ to solve the problem.

$$
\begin{aligned}
d & =r \times t \\
d & =45 \times 2.5 \\
d & =112.5
\end{aligned}
$$

Coached Example

Tanya walked 15 laps on an indoor track in 30 minutes. What was Tanya's average speed in laps per minute?

The speed formula is $r=$ \qquad .
The distance is \qquad laps.
The time is \qquad minutes.
Substitute the known values into the speed formula.
$r=$ \qquad -
Simplify the fraction.
$r=$ \qquad
Tanya's average speed was \qquad laps per minute.

