Lesson 16: Writing Expressions

An expression is a phrase made up of numbers, operation symbols, and sometimes variables. A variable is a letter that represents an unknown number.

When you multiply a number by a variable, you do not need a multiplication sign between the two. You can write the number directly in front of the variable. This number multiplied by the variable is called the coefficient.

The following are four examples of expressions. The first two contain only numbers and symbols and are called numerical expressions. The last two expressions have variables and are called algebraic expressions. In the algebraic expressions, 8 and 4 are the coefficients of z and y.

A term is a part of an expression that is either a number, a variable, or the product of a number and a variable. In the expression $2 x^{2}+8 y-5$, there are three terms: $2 x^{2}, 8 y$, and 5. The operations are not part of the terms. Like terms have the same variable.

To translate a word expression into a mathematical expression, you need to identify the operations. Here are some related key words or phrases for addition, subtraction, multiplication, division, and exponents.

Addition: sum, more, more than, plus, increased by, gain
Subtraction: difference, less, less than, minus, decreased by, loss
Multiplication: product, multiplied by, times, double, triple
Division: quotient, divided by, per, ratio, half, third, fourth, into, equal groups
Exponents: times itself, squared, cubed

TIP: Keep in mind that some words are used for more than one operation in an expression. For example, the word factor can represent division (the factors of 10 are $1,2,5$, and 10). It can also show multiplication by representing a number that is multiplied by another number. (The factors in 3×4 are 3 and 4.) You need to consider the context of the word problem.

You can translate words into a numerical or algebraic expression. When the expression includes either addition or multiplication only, the order in which the terms are written does not matter. (This is because the operations of addition and multiplication are commutative.)

Example

Write a numerical expression to represent "four plus three times itself."
The word plus indicates addition. The words times itself indicate an exponent.

The expression can be written as $4+3^{2}$. It can also be written as $3^{2}+4$.

When an expression includes subtraction or division, the order in which the terms are written does matter.

Example

Write an algebraic expression to represent "six less than twice a number."
Let $z=$ the number.
The phrase less than indicates subtraction. The two terms in the expression are 6 and $2 z$.

Which of the following expressions is correct: $6-2 z$ or $2 z-6$?
The phrase less than indicates that you have to change the order of the terms in the expression from the way they appear in the description.

The expression "six less than twice a number" can only be written as $2 z-6$.

Expressions can be represented using the distributive property.

Example

Write an algebraic expression to represent "a number multiplied by the sum of five and four." Let $n=$ the number.

The words multiplied by indicate multiplication. The word sum indicates addition.

The sum is the result of the addition. Because the variable z is multiplied by the sum of 5 and 4 , you must add before you can multiply. Parentheses can be used to separate the addition from the rest of the expression. The expression can be written as $z \bullet(5+4)$.

You do not need a multiplication sign between the variable and the expression in parentheses. Therefore, the expression can be written as $z(5+4)$.

Example

Write an expression to represent "six times the sum of seven plus three."
The word times indicates multiplication. The words sum of and plus indicate addition.

Because 6 is multiplied by the sum of 7 and 3, you must first add before you can multiply. Use parentheses to separate the addition. The expression can be written as $6 \cdot(7+3)$, or $6(7+3)$.

The factor 6 can be multiplied by the combined sum of 7 and $3: 6(7+3)$, or $6 \cdot 10$. By the distributive property, it can also be multiplied by the 7 and 3 factors independently: $6 \cdot 7+6 \cdot 3$.

